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Abstract 19 

While the measurements of atmospheric pollutants are useful in understanding the level of 20 

the air quality at a given area, receptor models are equally important in assessing the 21 

sources of these pollutants and the extent of their effect, helping in policy making to deal 22 

with air pollution problems. Such analyses were limited and were attempted until recently 23 

only with the use of expensive regulatory-grade instruments. In the present study we 24 

applied a two-step Positive Matrix Factorisation (PMF) receptor analysis at a background 25 

site using data acquired by low-cost sensors (LCS). Using PMF, the identification of the 26 

sources that affect the air quality at the background site in Birmingham provided results 27 

that were consistent with a previous study at the site, even though in different measuring 28 

periods, but also clearly separated the anticipated sources of particulate matter (PM) and 29 

pollution. Additionally, the method supplied a metric for the contribution of different 30 

sources to the overall air quality at the site, thus providing pollution source apportionment. 31 

The use of data from regulatory-grade (RG) instruments further confirmed the reliability of 32 

the results, as well as further clarifying the particulate matter composition and origin. 33 

Comparing the results from a previous analysis, in which a k-means clustering algorithm was 34 

used, a good consistency between the results was found, and the potential and limitations 35 

of each method when used with low-cost sensor data are highlighted. The analysis 36 

presented in this study paves the way for more extensive use of LCS for atmospheric 37 

applications and receptor modelling. Here, we present the infrastructure for understanding 38 

the factors that affect the air quality at a significantly lower cost that previously possible, 39 

thus opening up multiple new opportunities for regulatory and indicative monitoring for 40 

both scientific and industrial applications.  41 
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1. Introduction 42 

Air pollution is a major problem not only affecting human health (Pascal et al., 2013; Rivas 43 

et al., 2021; Shiraiwa et al., 2017; Wu et al., 2016; Zeger et al., 2008), but also causing 44 

environmental deterioration and social disparity due to its effect on climate change 45 

(Manisalidis et al., 2020; Mannucci and Franchini, 2017; Moore, 2009). This effect is more 46 

prominent especially within the urban environment or near pollution hot spots, though 47 

areas even hundreds of kilometres away from the emission sources can also be affected 48 

(Valavanidis et al., 2008, Bousiotis et al., 2021). As a result, the knowledge of the sources of 49 

air pollution is vital in both understanding the air quality at a given site as well as for policy 50 

making and action to improve air quality.  Such knowledge was provided, until now, by the 51 

analysis of data from expensive regulatory grade (RG) instruments, the use of which was not 52 

extensive due to their high cost and bulky size almost exclusively for scientific research. As a 53 

result, there is limited knowledge of the sources that affect the air quality. This is in part due 54 

to the exiguous deployment and spatial resolution of these expensive instruments 55 

(Kanaroglou et al., 2005), especially in low- and middle-income countries. In these areas the 56 

problem of air quality and its effect on human health is of great importance and expected to 57 

further increase in the coming years as a result of their rapid industrial and population 58 

growth (Kan et al., 2009; Petkova et al., 2013). To combat this, in the past decade, the 59 

development of low cost sensors (LCS) measuring either PM or gas phase pollutant 60 

concentrations has intensified (Lewis et al., 2018; Penza, 2019; Popoola et al., 2018), though 61 

still being far from an equal alternative to the more expensive RG instruments. Many 62 

limitations are associated with their use, with the main shortcoming being the inconsistency 63 

of their measurements, even for similar sensors deployed at the same site (Austin et al., 64 

2015; Sousan et al., 2016), either due to operational and detector sacrifices that allow them 65 

to be inexpensive or from the effect of meteorological conditions that bias their 66 

measurements (Crilley et al., 2020; Hagan and Kroll, 2020; Wang et al., 2021). Thus, 67 

consistent calibration (Kosmopoulos et al., 2020; De Vito et al., 2020) and data corrections 68 

(Crilley et al., 2018; Liang et al., 2021; Vajs et al., 2021) are required for these sensors to 69 

provide reliable measurements (though sometimes even this is not enough) in addition to 70 

their continuous improvement and evolution (Giordano et al., 2021). Nevertheless, these 71 
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sensors have the potential to change the state of air pollution monitoring by allowing wider 72 

use and better spatio-temporal coverage. 73 

Many applications of LCS have been found in over the recent years providing measurements 74 

at sites that were previously inaccessible by regulatory instrumentation, either due to being 75 

economically difficult (Miskell et al., 2018; Omokungbe et al., 2020; Pope et al., 2018) or due 76 

to the limitations set by their size (Jovašević-Stojanović et al., 2015; Nagendra et al., 2019, 77 

Whitty et al., 2022). Additionally, the use of LCS made possible higher spatial resolution than 78 

RG instruments (Feinberg et al., 2019; Krause et al., 2019; Prakash et al., 2021), greatly 79 

improving the ability to measure air quality at more points of interest even at 80 

neighbourhood scale (Schneider et al., 2017; Shafran-Nathan et al., 2019; Shindler, 2021), 81 

supplementing the existing regulatory network (Weissert et al., 2020). While the 82 

applications of LCS provided the information of the level of air quality at more sites, the vital 83 

information of air pollution sources and the environmental conditions that enable or disable 84 

air pollution, as well as their relative contributions is yet to be uncovered by their use. Pope 85 

et al., (2018) using PM ratios managed to separate and identify the effect of major sources 86 

of pollution in several cities in East Africa using data from LCS. Popoola et al, (2018) 87 

identified the sources of pollution near Heathrow Airport, London using a network of LCS. 88 

Bousiotis et al., (2021) using k-means clustering on PM data from both a LCS and an RG 89 

instrument, showed the strengths and limitations of the sensor, in measuring particle 90 

number concentrations and using them to identify the sources of pollution at a background 91 

site in Birmingham, UK. While these studies identified many sources and conditions that 92 

affected the air quality at the sites, there was no information on their temporal and relative 93 

contribution.  94 

In the present study, the two-step PMF (Beddows and Harrison, 2019), an advanced version 95 

of a statistical method for source apportionment successfully applied in many studies with 96 

RG instruments (Beddows et al., 2015; Harrison et al., 2011; Hopke, 2016; Leoni et al., 2018; 97 

Pokorná et al., 2016), is applied on data collected from various LCS. This provides a 98 

quantitative separation of the different sources and their contributions to a background site 99 

located in Birmingham. Furthermore, data from RG instruments and an Aerosol Chemical 100 

Speciation Monitor (ACSM) were also used in the analysis. This was done not only to 101 

compare the results from the two sets, but to further characterise the sources of larger 102 

particles at the site as well. The results of the present analysis are also compared with those 103 
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from a previous study at the same site made by Bousiotis et al., (2021), displaying the 104 

additional information provided by the PMF as well as to check the consistency of the 105 

results between the two methods. To the authors’ knowledge source apportionment with 106 

LCS data has only been attempted previously by Hagan et al., (2019) using Non-negative 107 

Matrix Factorisation on a dataset from New Delhi, India, providing information of 108 

combustion and non-combustion sources as well as their partial contributions in a three-109 

factor solution.  The present work sets the ground for future use of such sensors in a variety 110 

of scientific and industrial scenarios, which can make feasible their wider use either as 111 

standalone sources of the data needed for such studies or in combination with RG 112 

instruments for better spatial coverage. 113 

 114 

2. Methods 115 

2.1 Location of the site and instruments 116 

The measurement site is the Birmingham Air Quality Supersite (BAQS) located at the 117 

grounds of the University of Birmingham (52.45oN; 1.93oW) (fig. 1). This is an urban 118 

background site within a large residential area about 3 km southwest of the city centre of 119 

Birmingham. For this site, PM concentration measurements in the range 0.35 to 40 μm were 120 

collected using an Alphasense OPC-N3 in a 10 second resolution (averaged in 1-hour 121 

resolution) for the period between 16/10/2020 to 30/10/2020. Additionally, data from 122 

several LCS were also collected. NOx and ozone measurements were collected using the Box 123 

Of Clustered Sensors (BOCS, Smith et al., 2019) in the same time resolution, as well as black 124 

carbon (BC) concentrations using the MA200 sensor by Magee Scientific. Finally, the data for 125 

the lung deposited surface area (LDSA) of particles in the range of 10 nm to 10 μm, which is 126 

found to strongly correlate with BC emissions (Lepistö et al., 2022), was collected using a set 127 

of two Naneos Partectors by Naneos Particle Solutions GmbH. One sensor measured the 128 

surface of all particles in this size range, while the second is placed after a catalytic stripper 129 

(Catalytic Instruments CS015) which removes the semi-volatile particles (Haugen et al. 130 

2022).  131 

Apart from the data provided directly from the sensor before the catalytic stripper, the ratio 132 

between the measurements of the two Naneos Partectors was also considered according to: 133 

 134 
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𝐿𝐷𝑆𝐴!"#$% =	
𝐿𝐷𝑆𝐴	𝑎𝑓𝑡𝑒𝑟	𝑡ℎ𝑒	𝑐𝑎𝑡𝑎𝑙𝑦𝑡𝑖𝑐	𝑠𝑡𝑟𝑖𝑝𝑝𝑒𝑟
𝐿𝐷𝑆𝐴	𝑏𝑒𝑓𝑜𝑟𝑒	𝑡ℎ𝑒	𝑐𝑎𝑡𝑎𝑙𝑦𝑡𝑖𝑐	𝑠𝑡𝑟𝑖𝑝𝑝𝑒𝑟	 135 

 136 

This was done to resolve whether such a configuration can provide additional information 137 

for the origin of pollution or the age of the pollutants in the incoming air masses, as 138 

increased concentrations of semi-volatile compounds are usually associated with 139 

anthropogenic sources, especially in the urban environment (Mahbub et al., 2011, Schnelle-140 

Kreis et al., 2007, Xu and Zhang, 2011). Thus, a high LDSAratio is expected to be associated 141 

with fresher pollution which usually has a higher content of volatile compounds (i.e., 142 

pollution sources at a close distance from the site), while lower ratios are probably 143 

associated with either cleaner conditions or more regional and aged pollution with higher 144 

concentrations of semi-volatile compounds, generally associated with sources at a greater 145 

distance from the measuring site. This specific metric was also used in our previous study 146 

(Bousiotis et al., 2021) and the consistency of the results between the two will be 147 

compared.  148 

For better characterisation of the larger particles, the Aerodyne ACSM was used, providing 149 

information about its composition in the size range between 40 nm to 1 μm for NO3
-, SO4

2- 150 

and organic content. For the comparison of the results, data from RG instruments were also 151 

used, namely a Palas FIDAS (for PM), a Teledyne T500U (for NOx), a Thermo 49i (for O3) and 152 

an AE33 aethalometer from Magee Scientific (for BC). Comparison of the regulatory 153 

instruments and the LCS allows for consistency of the results between instrument types to 154 

be checked. More information about the sensors and instruments used in this study can be 155 

found in Bousiotis et al., (2021).  156 

Finally, for the present study the PMF analysis was performed using the second iteration of 157 

the PMF software developed by Paatero (2004a; 2004b). Data was analysed using the 158 

Openair package for R (Carlslaw and Ropkins, 2012), and back trajectory data were 159 

extracted by NOAA Air Resources Laboratory and calculated using the HYSPLIT model 160 

(Draxler and Hess, 1998). 161 

 162 

 163 

2.2 Positive Matrix Factorisation  164 
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The PMF is a multivariate data analysis, developed by Paatero (Paatero and Tapper, 1993; 165 

1994), which is the most commonly used method for source apportionment and has been 166 

applied numerous times in the field of aerosol science. The method is a weighted least-167 

squares technique that describes relationships among species measurements (Reff et al., 168 

2007). It assumes that X is a matrix of observed data, typically either particle number size 169 

distributions (PNSDs) or chemical composition data, and u is the known matrix of the 170 

experimental uncertainty of X. Both X and u are of dimensions n ´ m (where n is the number 171 

of measurements and m is the number of species measured). The method solves the 172 

bilinear matrix problem X = GF + E where F is the unknown right hand factor matrix 173 

(sources) of dimensions p ´ m, G is the unknown left hand factor matrix (contributions) of 174 

dimensions n ´ p, and E is the matrix of residuals. The problem is solved in the weighted 175 

least-squares sense: G and F are determined so that the Euclidean norm of E divided 176 

(element-by-element) by u is minimized. Furthermore, the solution is constrained so that all 177 

the elements of G and F are required to be non-negative (Paatero and Tapper, 1994). Higher 178 

F values account for better association of the given variable with the factor it is assigned to, 179 

while higher G values account for greater contribution of the factor at the given time period. 180 

In the present analysis, a combination of both PNSD and particle composition data were 181 

used. Such a combination may cause several shortcomings in the application of the PMF as 182 

different types of data are used (Beddows and Harrison, 2019). To overcome these 183 

shortcomings the two-step PMF method, proposed by Beddows and Harrison (2019), was 184 

used. In the first step of the method, a part of the dataset is PMF-analysed (i.e. composition) 185 

and a solution is provided. The time series G values (and errors) of the solution from the 186 

first step are then used as input variables to the second step, where they are combined with 187 

the additional measurements (i.e. PNSD data) dataset applying a second PMF analysis. In 188 

the present study the opposite path was considered, with the first step using the PNSD 189 

provided by the OPC sensor and the inclusion of particle composition data in the second 190 

step. This was explicitly done for two reasons: 1. to test the capabilities of the LCS in source 191 

apportionment, 2. to connect specific PNSD profiles with specific pollution sources. 192 

Furthermore, on the second step of the analysis detailed in Beddows and Harrison (2019) 193 

the explained variance of the factors from the first step were maximised. This directly 194 

connects the additional variables in the second step with the PNSD profiles found in the first 195 
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step, excluding the possible factors formed with the data from the additional LCS data. In 196 

the present study, this step in this method was omitted, as the aim is to present the results 197 

of the receptor model as they occur in real life using a combination of LCSs measuring both 198 

particle number concentrations and composition. 199 

For the study site, particle number concentration data were available from the OPC for 200 

particles of diameter < 40 μm, but only data up to 10 μm were used. This was due to the 201 

lack of sufficient non-zero counts in the larger size bins above that size threshold, which 202 

disfavours PMF analysis to be completed. Additionally, separate LCS data for NO and NO2 203 

were available. The NO data showed sensible variation, however, a great number of the NO 204 

data points had low negative values due to their very low concentrations, which is 205 

impossible data for the PMF algorithm. Rather than removing the negative numbers or 206 

artificially calibrating the data upwards, we use NOx (NO + NO2) as the variable of interest.  207 

Finally, to avoid the increased uncertainties from the use of unavailable data (as missing 208 

data are treated with increased uncertainties), a time window for which all data were 209 

available was chosen. Thus, data availability is 100% and no special treatment was 210 

considered for missing data. 211 

 212 

3. Results 213 

3.1 General conditions at the BAQS site. 214 

The measuring period (16th to 30th of October 2020) was chosen as it is a period which 215 

presented rather typical meteorological conditions in the area, had no missing data from 216 

any of the instruments used, and because they were the last days before the second 217 

lockdown due to COVID-19 was applied (31st of October 2020). General meteorological 218 

conditions were rather typical for the period in Birmingham, UK. As a result, the conditions 219 

and activities in the surrounding area found in this period are considered almost consistent 220 

with the normal conditions at the site in the autumn season. Mean temperature was 10.0 ± 221 

2.5°C and mean relative humidity was 87.9 ± 7.5 % (standard deviations are calculated using 222 

hourly data) during the measurement period. The average wind profile (Fig. S1) was also 223 

typical for the UK with mainly southwestern winds of relatively low speed (2.1 ± 1.1 m s-1).  224 

 225 
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3.2 First step PMF analysis (PNSD analysis) 226 

PMF is a descriptive model having no objective criterion in the choice of the optimal number 227 

of factors (Paatero et al., 2002). A 4-factor solution was chosen for this analysis. This is due 228 

to the relatively limited period analysed as, as mentioned earlier, no significant variation 229 

was found in either the meteorological conditions or the sources that affected the air 230 

quality in the area. Solutions with additional factors were also attempted but these 231 

provided no extra information on additional sources, rather the additional factors separated 232 

factors that had already found into smaller groups with no significant covariation. The PNSD 233 

profiles of the factors found are presented in Figure S2. Due to the limited variation of the 234 

PNSD profiles when presenting all the size bins available, making some of them appear 235 

identical (i.e. Factor 2 and 3, due to the increasing particle number concentration as the size 236 

decreases), the smallest particle diameter size bin at 400 nm (particle diameter range 237 

between 350 to 460 nm) was removed to better present the variation on the larger sizes. 238 

Thus, the particle profiles without the smallest available size are presented in Figure 2. The 239 

profiles in the range between 500 nm to 10 μm for the four factors, associated with unique 240 

formations extracted from the method are: 241 

• Factor 1, that presents no significant peaks in the measured range of the OPC, but 242 

does show a steady increasing trend with particle diameters below 1 μm 243 

• Factor 2, with a distinct particle diameter peak at about 2 μm 244 

• Factor 3, with a distinct particle diameter peak at about 2 μm and an increasing 245 

trend below 750 nm 246 

• Factor 4, accounting for particle diameter peaking at about 750 nm and 1.5 μm. 247 

 248 

3.3 Second step PMF with LCS data (LC analysis) 249 

The four-factor solution was also chosen in the second step analysis, for which the results of 250 

the first step are combined with the additional particle and gas phase composition datasets 251 

from LCS. The addition of more factors instead of adding information or providing clearer 252 

associations with the factors from the first step, it separated the existing factors and their 253 

association with the particle composition data into mixed factor groups with less significant 254 

contributions of the variables. The association of the variables with each factor is presented 255 

in figure 3, while the temporal variation of the contributions G of all the factors from this 256 
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analysis is presented in figure 4, along with the wind profile for some periods when each 257 

factor was dominant. 258 

 259 

The four new factors are: 260 

LC1 (Local and city centre pollution on calm conditions): The LC1 is strongly associated with 261 

the first factor from the initial PMF on the PNSD. For the period when the contribution of 262 

this factor is higher (18th and 19th of October, see fig. 4) rather slow winds prevail from 263 

many sectors (in this case mainly from the southwest). This factor has higher contributions 264 

during calm conditions and during periods with north-eastern winds, though with lower 265 

contribution (Fig. 5). It is highlighted that at the northeast of the specific site is the city 266 

centre of Birmingham which is one of the main sources of pollution as found from a 267 

previous study (Bousiotis et al., 2021). Looking at the diurnal variation (Fig. S3) of this factor 268 

we see increased contributions during early morning and evening hours, likely associating it 269 

with the morning and evening rush hours. The increased contributions during night-time 270 

should not be overlooked and are probably the result of the lower boundary layer height 271 

(BLH) during this time of the day. Additional data analysis shows an increased association of 272 

this factor with PM1 (Fig. 3), though this association is reduced for particles of larger sizes, 273 

further confirming the lack of additional peaks on greater sizes. This along with the 274 

increased association with the LDSA indicates the presence of large number of particles 275 

below the detection limit of the instrument. This factor is also associated with almost all the 276 

pollutants used, such as NOx, CO and BC, though not as strongly as factor LC3 that is 277 

discussed below, probably associated with pollution sources in a closer range to the 278 

measuring station, as well as to a smaller extent with pollution from the city centre. Its 279 

connection with air masses from the northeast is also confirmed from the back trajectory 280 

analysis (Fig. 6), in which the highest contributions of this factor were found for air masses 281 

from the northeast. 282 

LC2 (Marine): This factor is strongly associated with the fourth PNSD factor from the initial 283 

analysis (fig. 3). It presents relatively high association with PM which increases as the size 284 

increases. No other significant association is found rather than relatively weak ones with 285 

ozone, CO and the LDSAratio. It does not have a clear diurnal variation (fig. S3), though it has 286 

slightly increased contributions during night-time. Higher contributions for this factor are 287 

found with south and south-eastern winds of high speed (fig. 4 and 5). This can be seen in 288 
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Figure 4, where the highest contributions of this factor are associated with strong southern 289 

winds. The marine nature of this factor is clearly highlighted through the back trajectory 290 

analysis for this factor (Fig. 6) in which higher contributions are mostly found with air 291 

masses originating from the north Atlantic Ocean, while some contributions from southern 292 

Spain and Africa, which may be associated with Saharan dust and pollution from these 293 

areas. 294 

LC3 (midday city centre and southwest pollution): This factor does not have any significant 295 

association with any of the factors from the PMF analysis of the PNSD (fig. 3). It presents 296 

greater contributions during the midday (fig. S3), and it is associated with north-eastern and 297 

southwestern winds (fig. 5). It has high contributions with all the pollutants included in the 298 

analysis and the LDSAratio, which points to fresher pollution (pollution sources closer to the 299 

measuring station). Such sources of pollution in most cases are associated with particles of 300 

sizes smaller than that measured by the OPC, hence the lack of association with any of the 301 

factors found from the PNSD analysis. The back trajectory analysis provides no clear origin 302 

for the air masses of this factor (fig. 6), which may indicate a relatively smaller pollution 303 

lifetime, which is associated with incoming air masses from all directions. 304 

LC4 (Urban background): This factor has a rather strong association with the second factor 305 

from the PNSD analysis and a weaker one with the third one (Fig. 3). It does not have a clear 306 

diurnal variation (fig. S3) and it is mainly associated with north-eastern winds (Fig. 5). It 307 

presents weak associations with all the variables inputted in the PMF analysis making it hard 308 

to distinguish either a source or conditions for which this factor is enhanced. The back 309 

trajectory analysis though shows that this factor is associated with air masses from 310 

continental Europe as well as Scandinavia (Fig. 6), which for the UK, usually contain aged 311 

and hence typically larger secondary PM pollutants. 312 

 313 

3.4 Second step PMF with RG data (RG analysis) 314 

While the primary aim of the present study is to highlight the capabilities of LCS in source 315 

apportionment, the measurements provided by these devices are mainly focused on gas 316 

phase pollutants which are in most cases associated solely with ultrafine particles. The OPC 317 

measurements used for this site have a particle diameter range between 400 nm to 10 μm. 318 

Thus, apart from using data from RG instruments measuring gas phase pollutants, it was 319 
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considered sensible to add data from an ACSM, which measures compounds associated with 320 

larger particles, such as nitrate, sulphate, and organic compounds (used in this analysis).  321 

Some of the factors in this analysis are rather similar with those formed from the analysis 322 

using LCS dataset. Thus, the RG1 factor in this analysis is mainly associated with the first 323 

factor from the PNSD analysis in the first step (Fig. 7), similar to that found also in LC1 (Fig. 324 

3). The wind conditions are also similar for which these factors from the two analyses 325 

present their highest contribution (Fig. 8), as well as their temporal variation (Fig. S4) and 326 

diurnal variation (Fig. S5). The additional information granted using the ACSM data is the 327 

strong association of this factor with nitrate, and a stronger association with NOx and BC are 328 

also found, compared to the LC analysis. This further associates this factor with nearby 329 

sources of pollution which prevail with low wind speeds and may associate the conditions of 330 

this factor with the low BLH height found during that time, though high contributions were 331 

also found for early morning and evening hours, as in the LC analysis for the similar factor. 332 

Finally, the back trajectory analysis (fig. 9) shows higher contributions associated with air 333 

masses from the northeast, further confirming its similarity with the first factor from the LC 334 

analysis and its urban origins. 335 

The RG2 is unique and has no association with the factors from the PMF on PNSD data and 336 

is strongly associated only with sulphate (Fig. 7). It does not have a clear diurnal variation 337 

(fig. S5) and seems to have higher contributions with southwestern winds of rather high 338 

speed and to a lesser extent with north-easterly winds (Fig. 8). The back trajectory analysis 339 

(Fig. 9), while presenting few relatively high contributions from continental Europe, mainly 340 

associates this factor with incoming air masses from all sea origins surrounding the UK. This 341 

is expected as the ocean is a source of sulphate containing compounds (for the particles at 342 

the size range measured by the OPC), either sea-salt sulphate or marine biogenic sulphate 343 

(Lin et al., 2012; Raes et al., 2000). 344 

The RG3 is similar to the LC2 and is mainly associated with the fourth factor from the PNSD 345 

analysis and to a lesser extend with the third (Fig. 7). This factor has slightly increased 346 

contributions during night-time (Fig. S5) and south and southwestern winds (Fig. 8). It 347 

presents increased associations with increasing PM size, though in this case it is also 348 

strongly associated with O3. Unfortunately, no Cl or Na data were available to further 349 

determine the marine nature of this factor. The back trajectory analysis though once again 350 

presents higher contributions with marine air masses (Fig. 9), though some hot spots are 351 
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also found from continental Europe, which probably explain to an extent the small 352 

associations found with NOx and organic compounds from the ACSM.  353 

Finally, the RG4 is mainly associated with the second factor and to a lesser extent with the 354 

third from the PNSD analysis (Fig. 7). It presents higher contributions with north-eastern 355 

winds (Fig. 8), has an unclear diurnal variation (Fig. S5), and presents higher contributions 356 

with air masses from continental Europe (Fig. 9), like the LC4 from the second-step analysis. 357 

While in that analysis it was difficult to characterise the sources for that factor, the strong 358 

association with organic compounds found here with the addition of the ACSM data helps in 359 

its clearer characterisation. 360 

 361 

4. Discussion 362 

4.1 Comparison of the results from the second-step analysis 363 

It should be noted that regardless of any possible similarities between the two (second-364 

step) analyses, a direct comparison of the results should be conducted with great care. As 365 

different variables are considered, even minor differences may result in different trends, 366 

contribution of variables and the sources described. Regardless, the results of the two 367 

analyses have great similarities especially on specific factors that are associated with the 368 

same particle size distribution profiles (from the PNSD analysis), contribution of chemical 369 

compounds and diurnal variation. Three factors were found to have great similarities and 370 

were associated with similar particle profiles. Specifically, these are the factors describing 371 

the sources of particles which are either in close proximity to the measuring station or occur 372 

with almost calm conditions (Factor 1 on both analyses), the marine factor (Factor 2 on LC 373 

analysis and 3 on RG analysis) and the continental factor (Factor 4 on both analyses). 374 

Looking at their temporal contributions (Fig. 4 and S4), the first factors on both analyses 375 

appear to consistently peak on periods when the second set of factors (LC2 and RG3) 376 

presents lower G contributions (and vice versa), which is expected due to the nature of their 377 

sources. The factors on both sets though have almost identical temporal variation of their G 378 

contributions regardless of the dataset. For the fourth factors on both analyses, though 379 

presenting similar associations with their variables, differences are found in their temporal 380 

variations with the addition of the ACSM data. This shows that while these factors appear to 381 

be almost identical, small differences can still be found in their temporal variation and 382 

https://doi.org/10.5194/amt-2022-84
Preprint. Discussion started: 17 March 2022
c© Author(s) 2022. CC BY 4.0 License.



 14 

variable associations, when different datasets are considered. Nevertheless, the addition of 383 

the ACSM data shows a very high contribution of NO3
- on the first RG factor, SO4

2- for the 384 

second factor and the organic component on the fourth factor.  385 

The remaining factor from both analyses though is completely different between the two 386 

analyses and point towards the differences on the variables used for each. In the LC analysis 387 

the factor formed consists of sources that are associated with fresher pollution sources. 388 

Thus, a factor with strong associations with all the pollutants available was formed, it was 389 

not associated with any of the PNSD formations from the first-step analysis and presented a 390 

unique diurnal variation peaking midday. This should be expected as the particle size 391 

measured by the OPC is much larger compared to the size of the particles these chemical 392 

compounds are usually associated with. The occurrence of this factor was probably included 393 

partially to the first and fourth factor of the RG analysis, as these present relatively higher 394 

associations with NOx and BC and more enhanced contributions during midday hours 395 

compared to their LC analysis counterparts.  396 

Finally, using the RG instrument data, the additional factor is associated with sulphate 397 

alone. This is a result that was consistent regardless of the number of factors used, either 398 

greater or smaller. Sulphate containing compounds have a lower volatility compared to the 399 

other chemical compounds used in the analysis and is relatively more stable with a rather 400 

small seasonal variation (Utsunomiya and Wakamatsu, 1996), thus having a longer lifespan 401 

and distance of travel. As a result, sulphate was found not to be associated with any other 402 

chemical compound and always formed a factor of its own (regardless of the number of 403 

factors chosen).  404 

 405 

4.2 Comparison with the results from a previous study. 406 

Although different methodologies were used with the previous analysis for the BAQS site 407 

(Bousiotis et al., 2021), as well as for different time periods, many similarities were found 408 

for the sources of particles at the site. The main source of smaller particles at the site in the 409 

previous analysis is found to be the city centre in the northeast, for which relatively high 410 

concentrations of NOx were found. Similar is the case in the present analysis, as for the 411 

sources found to be associated with north-easterly winds an association was also found with 412 

NOx and the LDSAratio. Additionally, a source of sulphate found with southerly winds was also 413 
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confirmed in the present study, with the association of high sulphate concentrations with a 414 

factor, which presents higher contributions with winds from the southern sector. While in 415 

the previous analysis the sources responsible for this source could not be pinpointed, in the 416 

present analysis, using a back trajectory analysis, the sulphate factor was associated with 417 

marine particle sources from all directions. Furthermore, a factor in the present analysis, 418 

which identifies hot spots south of the measuring station with strong presence of PM of all 419 

sizes, was also found with the k-means analysis in the previous study, though in that case it 420 

was more associated with the pollution sources from that side rather than the long-range 421 

transport found here.  422 

These similarities are very encouraging, as even though the analyses were made for 423 

different periods and using different methods, there is consistency between the results. This 424 

means that regardless of the different seasons studied (previous analysis was performed 425 

during winter to early spring), the sources of particles (and pollution) are relatively uniform, 426 

without significant changes.  427 

Additionally, the k-means method identified sets of conditions that either promote or 428 

supress the pollution at the sites (as this can be illustrated with the variable particle 429 

concentrations between the clusters found from the analysis), rather than separate sources 430 

of pollution that affect the site. While this provides a more realistic picture of the conditions 431 

it makes it harder to distinguish the specific sources and their effect in its air quality. On the 432 

other hand, the PMF not only provides clearer separation of the sources, but the temporal 433 

contribution of each source as well, which shows the real extent of the effect of each source 434 

of particles or pollutants, thus achieving source apportionment rather than just the 435 

identification of pollution sources that the k-means offers. The k-means approach identifies 436 

the effect of the sources of particles, but it also separates cleaner periods as separate 437 

clusters. These two effects gives a more complete overall picture of the air quality at a site.  438 

PMF could also provide this information, but it would be more difficult to obtain looking at 439 

the different sources and the conditions that keep them to low contributions (this would 440 

also require a much greater number of factors).  441 

Furthermore, due to the complexity of the clusters from the k-means, pinpointing the 442 

sources that the particles are associated with is difficult. This is due to the clusters, being a 443 

set of different sources and conditions rather than clearly separated sources, were not 444 

clearly associated with distinct wind directions, speeds or hot-spots. Contrary to that, the 445 
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factors formed by the PMF present clearer association with specific sectors, thus making it 446 

easier to define the sources associated with them, as in the results they are presented as 447 

hot spots within the polar plots. 448 

The analysis of atmospheric data using either k-means or PMF are proven to provide 449 

adequate and trustworthy information for the sources of particles and by extension of 450 

pollution at a site, even with the sole use of LCS as shown in this paper and the preceding 451 

Bousiotis et al. 2021 paper. The combined use of both approaches provides a clearer picture 452 

of the different sources and their effect, as the PMF is able to better separate and provide 453 

the effect of the sources of pollution that affect the air quality at a site and the k-means 454 

provides a more realistic representation of the conditions at a site, by showing the 455 

combined effect of these sources. The relative consistency of the results found between the 456 

two analyses, even being in different time periods, is very encouraging and shows that the 457 

very important information of pollution receptor modelling is viable with LCS, providing a 458 

much-needed alternative for countries or scenarios where the use of regulatory-grade 459 

instruments is not feasible. The significantly lower price point of LCSs means that in addition 460 

to hyperlocal measurement of air pollution, it should now be possible to deliver hyperlocal 461 

source apportionment of air pollution. This ability will open new research and industrial 462 

abilities to pinpoint air pollution sources and subsequently manage them.  463 

Finally, the LDSAratio, a variable that was introduced in the previous analysis, was included in 464 

the present one as well. As in the previous analysis, this ratio was found to be more 465 

associated with fresher pollution from combustion sources near to the measuring station, 466 

for which it has reliably performed in both analyses.  467 

 468 

5. Conclusions 469 

To solve air quality problems and to deliver the associated policy making effectively, it is 470 

vital to have a methodology to measure the sources of air pollution, and their relative 471 

importance. Historically, this has been achieved using expensive RG instruments. The cost 472 

implications of these studies make assessment at dense spatial resolutions limited. In this 473 

study, data from a low-cost OPC and other LCS, measuring gas phase pollutants, black 474 

carbon and the lung deposited surface area of particles in BAQS were analysed using the 475 

two-step PMF analysis. Four factors were formed from this analysis and were associated 476 
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with their respective sources and to a great extent with unique PNSD profiles. The following 477 

factors were found: a factor associated with either combustion sources in close proximity of 478 

the measurement site or associated with calm conditions, a marine factor, a factor 479 

associated with midday activities from the city centre and a more constant factor from the 480 

northeast. The same analysis was also performed using data from RG instruments and the 481 

same PNSD factors. This was done to evaluate the results from the low-cost sensor analysis, 482 

as well as to further characterise and clarify the sources associated with the factors formed. 483 

Significant agreement was found between the results of the two analyses, highlighting that 484 

the LCS are capable for carrying out such analyses. The additional ACSM data from the 485 

second analysis further helped in the characterisation of the composition of the particles of 486 

each factor, clarifying the sources associated with nitrate, sulphate and organic compounds 487 

at the site, as well as strongly associating some with unique PNSD profiles. While in their 488 

present state, the LCSs do not possess the full capability of the RG instruments for providing 489 

high accuracy measurements, considering the limitations they were found to be adequate in 490 

providing with the trends of the particles and pollutants measured which are important for 491 

source apportionment studies. This is done at a fraction of the equipment cost; see 492 

Bousiotis et al. 2021 for cost estimates. 493 

Furthermore, comparing the results from the PMF to those from the k-means analysis 494 

showed the different strengths and weaknesses of each approach. The PMF is better in 495 

pinpointing the effect of separate sources of pollution, but it is difficult to give a clear 496 

representation of the actual conditions when each factor affects the site. The k-means is not 497 

as efficient in clearly separating the different sources, but it does provide a more realistic 498 

picture of the air quality at a site in relation to the ambient conditions. The combined use of 499 

both methods though provided a clearer picture for the conditions at the site. 500 

The methodologies developed and used in this study will help to reliably facilitate source 501 

apportionment studies in the future, with either the sole use of LCS or their combination 502 

with RG instruments. As for a given site, specific PNSD formations are associated with 503 

specific conditions and sources (Harrison et al., 2011), by creating a repository of unique 504 

PNSDs at a site and associating them with their respective sources, in the future the source 505 

apportionment may be done to an extend using only PNSD profiles and meteorological data 506 

alone. This will do much in simplifying the source apportionment process allowing its wider 507 

application and help in dealing with environmental challenges. For this though, further 508 
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testing in more diverse environments and scenarios is needed which, along with the 509 

anticipated development of the LCS, will provide a denser and reliable measuring network 510 

even for countries with lower incomes and help for cleaner and healthier environmental 511 

conditions. 512 
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FIGURE LEGENDS 824 

 825 

Figure 1:    Map of the measuring station. 826 

 827 

Figure 2:  Particle profiles of the factors from the PMF analysis (> 500 nm). The lines 828 

indicate the average particle count per second for each particle size bin. 829 

 830 

Figure 3:  Variable association for the factors from the LC analysis. Grey bars indicate 831 

the values of F, while red bars indicate the explained variations for each 832 

variable. 833 

 834 

Figure 4:  Temporal variation of the contributions of the factors from the LC analysis. The 835 

windroses refer to the wind conditions for the corresponding periods when 836 

specific factors presented higher G contributions. 837 

 838 

Figure 5:  Polar plot of the average G contributions of the factors from the LC analysis. 839 

 840 

Figure 6:  Average G contribution of the factors from the LC analysis for incoming air 841 

masses. Higher contributions indicate better association of the given factor 842 

with the corresponding air mass origin. 843 

 844 

Figure 7:  Variable association for the factors from the RG analysis. Grey bars indicate the 845 

values of F, while red bars indicate the explained variations for each variable.  846 

 847 

Figure 8: Polar plot of the average G contributions of the factors from the RG analysis. 848 

 849 

Figure 9:  Average G contribution of the factors from the RG analysis for incoming air 850 

masses. Higher contributions indicate better association of the given factor 851 

with the corresponding air mass origin. 852 

 853 
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 855 

Figure 1: Map of the measuring station. Imagery @2022 Bluesky, Getmapping plc, Infoterra 856 

Ltd & Bluesky, Maxar Technologies, The GoeInformation Group, Map data 857 

©2022 858 
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 863 

Figure 2: Particle profiles of the factors from the PMF analysis (above 500 nm). The lines 864 

indicate the average particle count per second for each particle size bin. 865 

 866 
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 868 

 869 

 870 
Figure 3: Contribution of the factors from the LC analysis. Grey bars indicate the values of F, 871 

while red bars indicate the explained variations for each variable.  872 
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 874 

Figure 4: Temporal variation of the contributions of the factors from the LC analysis. The 875 

windroses refer to the wind conditions for the corresponding periods when specific factors 876 

presented higher G contributions. 877 
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 879 
Figure 5: Polar plot of the average G contributions of the factors from the LC analysis. 880 
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LC4 885 

Figure 6: Average G contribution of the factors from the LC analysis for incoming air masses. 886 

Higher contributions indicate better association of the given factor with the corresponding 887 

air mass origin. 888 

 889 

 890 
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 896 

Figure 7: Variable association for the factors from the RG analysis. Grey bars indicate the 897 

values of F, while red bars indicate the explained variations for each variable.  898 

 899 

 900 

 901 
Figure 8: Polar plot of the average G contributions of the factors from the RG analysis. 902 
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RG4 906 

Figure 9: Average G contribution of the factors from the RG analysis for incoming air masses. 907 

Higher contributions indicate better association of the given factor with the corresponding 908 

air mass origin. 909 
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